

The Problem

Statistical Nature of Particles Electrons, Photons, and Ions

Electron Impact on Matter: Primary and Secondary Radiation

ElectronTrajectory
Simulation
Through Materials

The Approach

Laboratory Experimental Data

Complemented/Constrained

Modeling Work of the Observed Data

Present Capabilities of the ISL @ JPL

Europa's
Trailing-Leading
Cutoff
20 MeV?
25 MeV?

© 2018 California Institute of Technology. Government spor.

Ice Chamber for Europa's High-Energy Electron And Radiation-Environment Testing

Outer Telescope with vacuum seal O-rings.

Inner 2.5-inch diameter tube for water ice frozen in the tube or loaded as crushed powder.

(ICE-HEART) ~100 K and > ~ 1cm – 100 cm

Insulated for 100 K operation Using liquid nitrogen cooling

NIST Electron Sources Cover 300 keV to 28 MeV

© 2018 California Institute of Technology. Government sponsorship acknowledged

How to Quantify Bremsstrahlung (X-rays)? By Removing Secondary Electrons

5kG Halbach Cylindrical
Magnet @ 80 K
Deflecting Primary and
Secondary Electrons
Enables
Quantification of X-ray
Yields and Penetration
Depths

SmCo magnet deflects primary electrons Can only detect randomly scattered electrons, approximately 5% of total beam

i i

Above: typical secondary particle generation in the ICE-HEART when high energy electrons impinge upon ice with no magnet.

Right: Inserting a strong SmCo magnet (5 kGauss) into the chamber causes electrons to be deflected to the side, so that they no longer impinge upon the detector.

Results

Stating the Observational Facts

Secondary Electrons vs. X-rays

5 cm ice secondary electrons bremsstrahlung

Organics

Damage by Electrons 80% X-rays 20%

First JPL-NIST MIRF Data for 10 MeV Primary Electrons bombarding 5 cm thick ice targets at 100 K

Irradiation time (minutes) at 10.5 MeV and a dose of 0.43 nA

Interpretation

Reconciliation between Lab Data and Modeling

Accuracy of the MeV Electron Fluxes at Europa?

10 MeV/Total Flux 3E6/5E8 = **6E-3**

20 MeV/Total Flux 1E6/5E8 = **2E-3**

25 MeV/Total Flux 7E5/5E8 = **1.4E-3**

10 MeV/Total Flux 1E5/5E8 = **1E-3**

20 MeV/Total Flux 2E4/5E8 = **4E-5**

25 MeV/Total Flux 1.5E4/5E8 = **3E-5**

14

Back of the Envelop with 10 cm Ice

1 Yr on the Surface = 0.2 Myr @ 10 cm @ 10 MeV

Electrons ONLY (Bremsstrahlung NOT Included)

Electron Flux After/Incident (nA/μA): 10⁻³ (10 MeV); 2x10⁻³ (18 MeV); 4x10⁻³ (25 MeV)

Flux/Total Flux at the Surface: 6x10⁻³ (10 MeV); 2x10⁻³ (18 MeV); 1x10⁻³ (25 MeV)

Electron Flux after 10 cm Ice on Europa: 6x10⁻⁶ (10 MeV); 4x10⁻⁶ (18 MeV); 4x10⁻⁶ (25 MeV)

It will take ~2x10⁵ Units of time for the same dose at 10 cm depth

Electrons @ Europa: Conclusions

Disagreements persist – need to be further investigated

Nordheim et al., 2018
Surface Equivalent Dose
Of all the influx electrons:
≤10 cm in 10 Myr

Gudipati et al., unpublished Surface-equivalent Dose 10 MeV = 0.2Myr @ ~10 cm 25 MeV = 0.2Myr @ ~15 cm

Bremsstrahlung at 30 cm Depth

Bresmsstrahlung Flux After/Incident (nA/ μ A): 10⁻⁵ (10 MeV); 2x10⁻⁵ (18 MeV); 1x10⁻⁴ (25 MeV)

Flux/Total Flux at the Surface: 6x10⁻³ (10 MeV); 2x10⁻³ (18 MeV); 1x10⁻³ (25 MeV)

Electron Flux after 10 cm Ice on Europa: 6x10⁻⁸ (10 MeV); 4x10⁻⁸ (18 MeV); 1x10⁻⁷ (25 MeV)

It will take ~10⁷ Units of time for the same dose at 30 cm depth

If Damage Efficiency of Bremsstrahlung is 10% Compared to Electrons (our preliminary results ~20%) ~100 Myr for surface equivalent does at 30 cm depth.

Conclusions

- There is disagreement between modeling predictions and Laboratory Data (~1-2 orders of magnitude)
- Europa's surface radiation processing depths are dictated by the "age of the surface layer" – 1 yr – 100 Myr?
- Younger landforms (<100 kyr) are likely to be less processed at ~10 cm depths throughout Europa.
- Laboratory data and modeling studies need to be continued and converged.

Acknowledgments

Thank You for Your Time!

Funding: JPL R&TD Funds (2014-2016)

After 5 Years of Proposing, Finally We are Selected to Continue this Work!

Thanks to NASA SSW Funding (2018 -)

Keep Tuned for Publications and Further Work!

